AREAS BETWEEN CURVES

Figure 1. area between $y=f(x)$ and $y=g(x)$

Figure 2. area between $y=f(x)$ and $y=g(x)$

Definition 0.1. [Area between $y=f(x)$ and $y=g(x)$:] If f and g are continuous functions on the interval $[a, b]$, and if $f(x) \geq g(x)$ for all x in $[a, b]$, then the Area of the region bounded above by $y=f(x)$, below by $y=g(x)$, on the left by the line $x=a$, and on the right by $x=b$ [see figures 1 and 2] is

$$
A=\int_{a}^{b}[f(x)-g(x)] d x
$$

We usually use the notation

$$
A=\int_{a}^{b}\left[y_{\mathrm{Top}}-y_{\mathrm{Bottom}}\right] d x
$$

Example 0.1. Find the area of the region bounded above by $y=x^{2}+3$, bounded below by $y=x$, and bounded on the sides by the lines $x=-1$ and $x=1$.

\boldsymbol{x}

Figure 3

Solution:

Here the top curve is $y=x^{2}+3$ and the bottom curve is $y=x$. Also we have $a=-1$ and $b=1$. Hence

$$
\begin{aligned}
A & =\int_{a}^{b}[f(x)-g(x)] d x \\
& =\int_{-1}^{1}\left[x^{2}+3-x\right] d x \\
& =\left[\frac{1}{3} x^{3}-\frac{1}{2} x^{2}+3 x\right]_{-1}^{1} \\
& =\left[\frac{1}{3}-\frac{1}{2}+3\right]-\left[\frac{1}{3}(-1)^{3}-\frac{1}{2}(-1)^{2}+3(-1)\right] \\
& =\left[\frac{1}{3}-\frac{1}{2}+3+\frac{1}{3}+\frac{1}{2}+3\right] \\
& =\left[6+\frac{2}{3}\right] \\
& =\frac{20}{3} .
\end{aligned}
$$

Example 0.2. Find the area of the region bounded by $y=6-x^{2}$, and by $y=x$.

\boldsymbol{x}

Figure 4

Solution:

Here the top curve is $y=6-x^{2}$ and the bottom curve is $y=x$. The limits a and b will be the x-coordinates of the intersections of the two curves. To find the limits we set

$$
\begin{aligned}
6-x^{2} & =x \\
x^{2}+x-6 & =0 \\
(x+3)(x-2) & =0 \\
x & =-3,2
\end{aligned}
$$

Thus we have $a=-3$ and $b=2$. Hence

$$
\begin{aligned}
A & =\int_{a}^{b}[f(x)-g(x)] d x \\
& =\int_{-3}^{2}\left[6-x^{2}-x\right] d x \\
& =\left[6 x-\frac{1}{3} x^{3}-\frac{1}{2} x^{2}\right]_{-3}^{2} \\
& =\left[6(2)-\frac{1}{3}(2)^{3}-\frac{1}{2}(2)^{2}\right]-\left[6(-3)-\frac{1}{3}(-3)^{3}-\frac{1}{2}(-3)^{2}\right] \\
& =\left[12-\frac{8}{3}-\frac{4}{2}+18-\frac{27}{3}+\frac{9}{2}\right] \\
& =\left[19-\frac{8}{3}+\frac{9}{2}\right] \\
& =\frac{125}{6} .
\end{aligned}
$$

Figure 5

Definition 0.2. [Area between $y=f(x)$ and $y=g(x)$:] If f and g are continuous functions on the interval $[a, b]$. Let $a \leq c \leq b$. Suppose that $f(x) \geq g(x)$ for all x in $[a, c]$, and $g(x) \geq f(x)$ for all x in $[c, b]$. Then the Area of the region bounded by $y=f(x), y=g(x)$, and the lines $x=a$, and $x=b$ [see figure5] is

$$
A=\int_{a}^{c}[f(x)-g(x)] d x+\int_{c}^{b}[g(x)-f(x)] d x .
$$

Example 0.3. Find the area of the region bounded by the curves $y=\sin x, y=\cos x, x=0$, and $x=\frac{\pi}{2}$.

Figure 6

Solution:

The two curves intersect when $\sin x=\cos x$, that is, when $x=\frac{\pi}{4}$. Now, since $\cos x \geq \sin x$ when $0 \leq x \leq \frac{\pi}{4}$ and $\sin x \geq \cos x$ when $\frac{\pi}{4} \leq x \leq \frac{\pi}{2}$. Then the area is

$$
\begin{aligned}
A & =\int_{0}^{\frac{\pi}{4}}[\cos x-\sin x] d x+\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}[\sin x-\cos x] d x \\
& =[\sin x+\cos x]_{0}^{\frac{\pi}{4}}+[-\sin x-\cos x]_{\frac{\pi}{4}}^{\frac{\pi}{2}} \\
& =\left[\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}\right)-(1-0)\right]+\left[(-0-1)-\left(-\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}\right)\right] \\
& =\left[\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-1-1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}\right] \\
& =\frac{4}{\sqrt{2}}-2 \\
& =2 \sqrt{2}-2 .
\end{aligned}
$$

Example 0.4. Find the area of the region enclosed by $y^{2}=x$ and $x-2 y=3$.

Figure 7

Solution: We start with solving the equations $y^{2}=x$ and $x-2 y=3$.

$$
\begin{aligned}
y^{2}-2 y & =3 \\
y^{2}-2 y-3 & =0 \\
(y-3)(y+1) & =0 \\
y & =3,-1
\end{aligned}
$$

Thus $x=9,1$.

Hence the points of intersection are $(1,-1)$ and $(9,3)$. Knowing the points of intersection does not give us the right limits for the integral. Observe that x moves from 0 to 9 . When $0 \leq x \leq 1$, the top curve is $y=\sqrt{x}$ and the bottom curve is $y=-\sqrt{x}$, and when $1 \leq x \leq 9$, the top curve is $y=\sqrt{x}$ and the bottom curve is $y=\frac{x-3}{2}$. Hence

$$
\begin{aligned}
A & =\int_{0}^{1}[\sqrt{x}-(-\sqrt{x})] d x+\int_{1}^{9}\left[\sqrt{x}-\left(\frac{x-3}{2}\right)\right] d x \\
& =\int_{0}^{1}\left[2 x^{\frac{1}{2}}\right] d x+\int_{1}^{9}\left[x^{\frac{1}{2}}-\frac{1}{2} x+\frac{3}{2}\right] d x \\
& =\left[\frac{4}{3} x^{\frac{3}{2}}\right]_{0}^{1}+\left[\frac{2}{3} x^{\frac{3}{2}}-\frac{1}{4} x^{2}+\frac{3}{2} x\right]_{1}^{9} \\
& =\left[\frac{4}{3}\right]+\left[\left(\frac{54}{3}-\frac{81}{4}+\frac{27}{2}\right)-\left(\frac{2}{3}-\frac{1}{4}+\frac{3}{2}\right)\right] \\
& =\left[\frac{4}{3}+\frac{54}{3}-\frac{81}{4}+\frac{27}{2}-\frac{2}{3}+\frac{1}{4}-\frac{3}{2}\right] \\
& =\left[\frac{4}{3}+18-20+12-\frac{2}{3}\right] \\
& =\left[10+\frac{2}{3}\right] \\
& =\frac{32}{3}
\end{aligned}
$$

There is an easier way for solving Example 0.4. Instead of regarding y as a function of x, we will regard x as a function of y.

Figure 8. area between $x=f(y)$ and $x=g(y)$

Figure 9. area between $x=f(y)$ and $x=g(y)$

Definition 0.3. [Area between $x=f(y)$ and $x=g(y)$:] If f and g are continuous functions on the interval $[c, d]$, and if $f(y) \geq g(y)$ for all y in $[c, d]$, then the Area of the region bounded above by $x=f(y)$, below by $x=g(y)$, on the left by the line $y=c$, and on the right by $y=d$ [see figures 8 and 9] is

$$
A=\int_{c}^{d}[f(y)-g(y)] d y
$$

We usually use the notation

$$
A=\int_{c}^{d}\left[x_{\mathrm{Right}}-x_{\mathrm{Left}}\right] d y
$$

Example 0.5. Find the area of the region enclosed by $y^{2}=x$ and $x-2 y=3$.

Figure 10

Solution: We start with solving the equations $y^{2}=x$ and $x-2 y=3$.

$$
\begin{aligned}
y^{2}-2 y & =3 \\
y^{2}-2 y-3 & =0 \\
(y-3)(y+1) & =0 \\
y & =3,-1 .
\end{aligned}
$$

Now, it is clear that y moves from -1 to 3 and we have $x=2 y+3$ as the right curve and $x=y^{2}$ as the left curve. Hence

$$
\begin{aligned}
A & =\int_{c}^{d}[f(y)-g(y)] d y \\
& =\int_{-1}^{3}\left[2 y+3-y^{2}\right] d y \\
& =\left[y^{2}+3 y-\frac{1}{3} y^{3}\right]_{-1}^{3} \\
& =\left[(9+9-9)-\left(1-3+\frac{1}{3}\right)\right] \\
& =\left[9-1+3-\frac{1}{3}\right] \\
& =\left[11-\frac{1}{3}\right] \\
& =\frac{32}{3} .
\end{aligned}
$$

Exercises 0.1. In Exercises $1-10$ sketch the region bounded by the given curves and find the area of the region.
(1) $y=x^{2}+3, y=x, x=-1, x=1$
(2) $y=x^{2}, y=x$
(3) $x+y^{2}=0, x=y^{2}+1, y=0, y=3$
(4) $y=x^{2}, y^{2}=x$
(5) $y=\sqrt{x}, y=\frac{x}{2}$
(6) $y=x^{2}+1, y=3-x^{2}, x=-2, x=2$
(7) $y+x=0, y^{2}+x=2$
(8) $y=2 x-x^{2}, y=x^{3}$
(9) $y=\frac{1}{x}, y=\frac{1}{x^{2}}, x=1, x=2$
(10) $y=\frac{1}{x}, y=1, x=0, y=2$

In Exercises 11-15 find the area of the region bounded by the given curves by two methods (a) integrating with respect to x, and (b) integrating with respect to y.
(11) $y^{2}+4 x=0, y=2 x+4$
(12) $y=\sqrt{x}, y=-x, x=1, x=4$
(13) $y^{2}=x, 2 y^{2}=x+4$
(14) $y=1-x^{2}, y=x-1$
(15) $y=x^{2}, y=4$

