AREAS BETWEEN CURVES

FIGURE 1. area between y = f(x) and y = g(x)

FIGURE 2. area between y = f(x) and y = g(x)

Definition 0.1. [Area between y = f(x) and y = g(x):] If f and g are continuous functions on the interval [a, b], and if $f(x) \ge g(x)$ for all x in [a, b], then the **Area** of the region bounded above by y = f(x), below by y = g(x), on the left by the line x = a, and on the right by x = b [see figures 1 and 2] is

$$A = \int_{a}^{b} [f(x) - g(x)] \, dx.$$

We usually use the notation

$$A = \int_{a}^{b} [y_{\text{Top}} - y_{\text{Bottom}}] \, dx.$$

Example 0.1. Find the area of the region bounded above by $y = x^2 + 3$, bounded below by y = x, and bounded on the sides by the lines x = -1 and x = 1.

FIGURE 3

Solution:

Here the top curve is $y = x^2 + 3$ and the bottom curve is y = x. Also we have a = -1 and b = 1. Hence

$$\begin{split} A &= \int_{a}^{b} [f(x) - g(x)] \ dx \\ &= \int_{-1}^{1} [x^{2} + 3 - x] \ dx \\ &= \left[\frac{1}{3}x^{3} - \frac{1}{2}x^{2} + 3x \right]_{-1}^{1} \\ &= \left[\frac{1}{3} - \frac{1}{2} + 3 \right] - \left[\frac{1}{3}(-1)^{3} - \frac{1}{2}(-1)^{2} + 3(-1) \right] \\ &= \left[\frac{1}{3} - \frac{1}{2} + 3 + \frac{1}{3} + \frac{1}{2} + 3 \right] \\ &= \left[6 + \frac{2}{3} \right] \\ &= \frac{20}{3}. \end{split}$$

Example 0.2. Find the area of the region bounded by $y = 6 - x^2$, and by y = x.

FIGURE 4

Solution:

Here the top curve is $y = 6 - x^2$ and the bottom curve is y = x. The limits a and b will be the x-coordinates of the intersections of the two curves. To find the limits we set

$$6 - x^{2} = x$$
$$x^{2} + x - 6 = 0$$
$$(x + 3)(x - 2) = 0$$
$$x = -3, 2$$

Thus we have a = -3 and b = 2. Hence

$$\begin{split} A &= \int_{a}^{b} [f(x) - g(x)] \ dx \\ &= \int_{-3}^{2} [6 - x^{2} - x] \ dx \\ &= \left[6x - \frac{1}{3}x^{3} - \frac{1}{2}x^{2} \right]_{-3}^{2} \\ &= \left[6(2) - \frac{1}{3}(2)^{3} - \frac{1}{2}(2)^{2} \right] - \left[6(-3) - \frac{1}{3}(-3)^{3} - \frac{1}{2}(-3)^{2} \right] \\ &= \left[12 - \frac{8}{3} - \frac{4}{2} + 18 - \frac{27}{3} + \frac{9}{2} \right] \\ &= \left[19 - \frac{8}{3} + \frac{9}{2} \right] \\ &= \frac{125}{6}. \end{split}$$

Figure 5

Definition 0.2. [Area between y = f(x) and y = g(x):] If f and g are continuous functions on the interval [a, b]. Let $a \le c \le b$. Suppose that $f(x) \ge g(x)$ for all x in [a, c], and $g(x) \ge f(x)$ for all x in [c, b]. Then the **Area** of the region bounded by y = f(x), y = g(x), and the lines x = a, and x = b [see figure5] is

$$A = \int_{a}^{c} [f(x) - g(x)] \, dx + \int_{c}^{b} [g(x) - f(x)] \, dx.$$

Example 0.3. Find the area of the region bounded by the curves $y = \sin x$, $y = \cos x$, x = 0, and $x = \frac{\pi}{2}$.

Figure 6

Solution:

The two curves intersect when $\sin x = \cos x$, that is, when $x = \frac{\pi}{4}$. Now, since $\cos x \ge \sin x$ when $0 \le x \le \frac{\pi}{4}$ and $\sin x \ge \cos x$ when $\frac{\pi}{4} \le x \le \frac{\pi}{2}$. Then the area is

$$A = \int_0^{\frac{\pi}{4}} \left[\cos x - \sin x\right] dx + \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \left[\sin x - \cos x\right] dx$$

= $\left[\sin x + \cos x\right]_0^{\frac{\pi}{4}} + \left[-\sin x - \cos x\right]_{\frac{\pi}{4}}^{\frac{\pi}{2}}$
= $\left[\left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}\right) - (1 - 0)\right] + \left[\left(-0 - 1\right) - \left(-\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}\right)\right]$
= $\left[\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} - 1 - 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}\right]$
= $\frac{4}{\sqrt{2}} - 2$
= $2\sqrt{2} - 2$

Example 0.4. Find the area of the region enclosed by $y^2 = x$ and x - 2y = 3.

FIGURE 7

Solution: We start with solving the equations $y^2 = x$ and x - 2y = 3.

$$y^{2} - 2y = 3$$
$$y^{2} - 2y - 3 = 0$$
$$(y - 3)(y + 1) = 0$$
$$y = 3, -1$$
Thus $x = 9, 1$.

Hence the points of intersection are (1, -1) and (9, 3). Knowing the points of intersection does not give us the right limits for the integral. Observe that x moves from 0 to 9. When $0 \le x \le 1$, the top curve is $y = \sqrt{x}$ and the bottom curve is $y = -\sqrt{x}$, and when $1 \le x \le 9$, the top curve is $y = \sqrt{x}$ and the bottom curve is $y = \frac{x-3}{2}$. Hence

$$\begin{split} A &= \int_{0}^{1} \left[\sqrt{x} - (-\sqrt{x}) \right] \, dx + \int_{1}^{9} \left[\sqrt{x} - \left(\frac{x-3}{2} \right) \right] \, dx \\ &= \int_{0}^{1} \left[2x^{\frac{1}{2}} \right] \, dx + \int_{1}^{9} \left[x^{\frac{1}{2}} - \frac{1}{2}x + \frac{3}{2} \right] \, dx \\ &= \left[\frac{4}{3}x^{\frac{3}{2}} \right]_{0}^{1} + \left[\frac{2}{3}x^{\frac{3}{2}} - \frac{1}{4}x^{2} + \frac{3}{2}x \right]_{1}^{9} \\ &= \left[\frac{4}{3} \right] + \left[\left(\frac{54}{3} - \frac{81}{4} + \frac{27}{2} \right) - \left(\frac{2}{3} - \frac{1}{4} + \frac{3}{2} \right) \right] \\ &= \left[\frac{4}{3} + \frac{54}{3} - \frac{81}{4} + \frac{27}{2} - \frac{2}{3} + \frac{1}{4} - \frac{3}{2} \right] \\ &= \left[\frac{4}{3} + 18 - 20 + 12 - \frac{2}{3} \right] \\ &= \left[10 + \frac{2}{3} \right] \\ &= \frac{32}{3}. \end{split}$$

There is an easier way for solving Example 0.4. Instead of regarding y as a function of x, we will regard x as a function of y.

FIGURE 8. area between x = f(y) and x = g(y)

FIGURE 9. area between x = f(y) and x = g(y)

Definition 0.3. [Area between x = f(y) and x = g(y):] If f and g are continuous functions on the interval [c, d], and if $f(y) \ge g(y)$ for all y in [c, d], then the **Area** of the region bounded above by x = f(y), below by x = g(y), on the left by the line y = c, and on the right by y = d [see figures8 and 9] is

$$A = \int_c^d [f(y) - g(y)] \, dy.$$

We usually use the notation

$$A = \int_{c}^{d} [x_{\text{Right}} - x_{\text{Left}}] \, dy.$$

Example 0.5. Find the area of the region enclosed by $y^2 = x$ and x - 2y = 3.

Figure 10

Solution: We start with solving the equations $y^2 = x$ and x - 2y = 3.

$$y^{2} - 2y = 3$$
$$y^{2} - 2y - 3 = 0$$
$$(y - 3)(y + 1) = 0$$
$$y = 3, -1.$$

Now, it is clear that y moves from -1 to 3 and we have x = 2y + 3 as the right curve and $x = y^2$ as the left curve. Hence

$$\begin{split} A &= \int_{c}^{d} [f(y) - g(y)] \, dy \\ &= \int_{-1}^{3} \left[2y + 3 - y^{2} \right] \, dy \\ &= \left[y^{2} + 3y - \frac{1}{3}y^{3} \right]_{-1}^{3} \\ &= \left[(9 + 9 - 9) - \left(1 - 3 + \frac{1}{3} \right) \right] \\ &= \left[9 - 1 + 3 - \frac{1}{3} \right] \\ &= \left[11 - \frac{1}{3} \right] \\ &= \frac{32}{3}. \end{split}$$

Exercises 0.1. In Exercises 1 - 10 sketch the region bounded by the given curves and find the area of

the region.

(1)
$$y = x^2 + 3$$
, $y = x$, $x = -1$, $x = 1$
(2) $y = x^2$, $y = x$
(3) $x + y^2 = 0$, $x = y^2 + 1$, $y = 0$, $y = 3$
(4) $y = x^2$, $y^2 = x$
(5) $y = \sqrt{x}$, $y = \frac{x}{2}$
(6) $y = x^2 + 1$, $y = 3 - x^2$, $x = -2$, $x = 2$
(7) $y + x = 0$, $y^2 + x = 2$
(8) $y = 2x - x^2$, $y = x^3$
(9) $y = \frac{1}{x}$, $y = \frac{1}{x^2}$, $x = 1$, $x = 2$
(10) $y = \frac{1}{x}$, $y = 1$, $x = 0$, $y = 2$

In Exercises 11 - 15 find the area of the region bounded by the given curves by two methods (a) integrating with respect to x, and (b) integrating with respect to y.

(11)
$$y^2 + 4x = 0, y = 2x + 4$$

(12) $y = \sqrt{x}, y = -x, x = 1, x = 4$
(13) $y^2 = x, 2y^2 = x + 4$
(14) $y = 1 - x^2, y = x - 1$
(15) $y = x^2, y = 4$