VOLUME-DISK AND WASHER METHODS

Figure 1

Figure 2

Definition 0.1. [Volumes of solids of revolution: Disk method: Perpendicular to the x -axis] Let \mathcal{R} be the region bounded by $y=f(x), y=0, x=a$, and $x=b$. When this region is revolved about x-axis we get a solid \mathcal{S}. A cross-section through x perpendicular to the x-axis is a circular disk with radius equal to $f(x)$. Hence the area of the cross-section $A(x)=\pi \cdot(\text { radius })^{2}=\pi[f(x)]^{2}$. The Volume of \mathcal{S} is given by the following formula

$$
V=\int_{a}^{b} A(x) d x=\int_{a}^{b} \pi[f(x)]^{2} d x
$$

Example 0.1. find the volume of the solid that is obtained when the region $y=\sqrt{x}, y=0, x=0$, and $x=2$ is revolved about the x-axis

Figure 3

Figure 4

Solution:

Since we are rotating about the x-axis, we should integrate with respect to x. The cross-section at any $x \in[0,2]$ perpendicular to the x-axis is a disk with radius \sqrt{x}. Then

$$
\begin{aligned}
V & =\int_{a}^{b} \pi[f(x)]^{2} d x \\
& =\int_{0}^{2} \pi[\sqrt{x}]^{2} d x \\
& =\int_{0}^{2} \pi[x] d x \\
& =\pi\left[\frac{1}{2} x^{2}\right]_{0}^{2} \\
& =\pi\left[\frac{1}{2} 4\right] \\
& =2 \pi
\end{aligned}
$$

Figure 5

Figure 6

Definition 0.2. [Volumes of solids of revolution: Disk method: Perpendicular to the y-axis]
Let \mathcal{R} be the region bounded by $x=f(y), x=0, y=c$, and $y=d$. When this region is revolved about y-axis we get a solid \mathcal{S}. A cross-section through y perpendicular to the y-axis is a circular disk with radius equal to $f(y)$. Hence the area of the cross-section $A(y)=\pi \cdot(\text { radius })^{2}=\pi[f(y)]^{2}$. The Volume of \mathcal{S} is given by the following formula

$$
V=\int_{c}^{d} A(y) d y=\int_{c}^{d} \pi[f(y)]^{2} d y .
$$

Example 0.2. find the volume of the solid that is obtained when the region $y=x^{3}, x=0$, and $y=8$ is revolved about the y-axis

Figure 7

Figure 8

Solution:

Since we are rotating about the y-axis, we should integrate with respect to y. The cross-section at any $y \in[0,8]$ perpendicular to the y-axis is a disk with radius $\sqrt[3]{y}$. Then

$$
\begin{aligned}
V & =\int_{c}^{d} \pi[f(y)]^{2} d y \\
& =\int_{0}^{8} \pi[\sqrt[3]{y}]^{2} d y \\
& =\int_{0}^{8} \pi y^{\frac{2}{3}} d y \\
& =\pi\left[\frac{5}{3} y^{\frac{5}{3}}\right]_{0}^{8} \\
& =\pi\left[\frac{5}{3} 8^{\frac{5}{3}}\right] \\
& =\frac{96 \pi}{3}
\end{aligned}
$$

Figure 9

Note 0.1. Note that the area of an annular [region bounded by two circles one of radius r_{1} and the other of radius r_{2} with $\left.r_{1}<r_{2}.\right]$ is $A=\pi\left[r_{2}^{2}-r_{1}^{2}\right]=\pi\left[(\text { outer radius })^{2}-(\text { inner radius })^{2}\right]$.

Figure 10

Figure 11
Definition 0.3. [Volumes of solids of revolution: Washer method: Perpendicular to the x-axis]

Let \mathcal{R} be the region bounded by $y=f(x), y=g(x), x=a$, and $x=b$, where $f(x) \geq g(x), \forall x \in[a, b]$.
When this region is revolved about x-axis we get a solid \mathcal{S}. A cross-section taken perpendicular to the x-axis at any point x is an annular "washer-shaped" with inner radius equal to $g(x)$ and outer radius equal to $f(x)$. Hence the area of the cross-section
$A(x)=\pi\left[(\text { outer radius })^{2}-(\text { inner radius })^{2}\right]=\pi\left[[f(x)]^{2}-[g(x)]^{2}\right]$.
Then the Volume of \mathcal{S} is given by the following formula

$$
V=\int_{a}^{b} A(x) d x=\int_{a}^{b} \pi\left[(f(x))^{2}-(g(x))^{2}\right] d x
$$

A similar definition about the y-axis should be obtained by the reader.

Example 0.3. Find the volume of the solid obtained by revolved the region $y=x$ and $y=x^{2}$ about the x-axis

Figure 12

Figure 13

Solution:

Since we are rotating about the x-axis, we should integrate with respect to x. The cross-section at any $x \in[0,1]$ perpendicular to the x-axis is an annular "washer-shaped" with inner radius equal to x^{2} and outer radius equal to x. Then

$$
\begin{aligned}
V & =\int_{a}^{b} \pi\left[(f(x))^{2}-(g(x))^{2}\right] d x \\
& =\int_{0}^{1} \pi\left[(x)^{2}-\left(x^{2}\right)^{2}\right] d x \\
& =\int_{0}^{1} \pi\left[x^{2}-x^{4}\right] d x \\
& =\pi\left[\frac{1}{3} x^{3}-\frac{1}{5} x^{5}\right]_{0}^{1} \\
& =\pi\left[\frac{1}{3}-\frac{1}{5}\right] \\
& =\frac{2 \pi}{15} .
\end{aligned}
$$

Example 0.4. Find the volume of the solid obtained by revolved the region $y=x$ and $y=x^{2}$ about the y-axis

Figure 14

Figure 15

Solution:

Since we are rotating about the y-axis, we should integrate with respect to y. The cross-section at any $y \in[0,1]$ perpendicular to the y-axis is an annular "washer-shaped" with inner radius equal to y and outer radius equal to \sqrt{y}. Then

$$
\begin{aligned}
V & =\int_{c}^{d} \pi\left[(\text { outer radius })^{2}-(\text { inner radius })^{2}\right] d y \\
& =\int_{0}^{1} \pi\left[(\sqrt{y})^{2}-(y)^{2}\right] d y \\
& =\int_{0}^{1} \pi\left[y-y^{2}\right] d x \\
& =\pi\left[\frac{1}{2} y^{2}-\frac{1}{3} y^{3}\right]_{0}^{1} \\
& =\pi\left[\frac{1}{2}-\frac{1}{3}\right] \\
& =\frac{\pi}{6} .
\end{aligned}
$$

Exercises 0.1. In Exercises $1-10$ find the volume of the solid obtained by rotating the region bounded by the given curves about the given axis. Sketch the region, the solid, and a typical disk or "washer".
(1) $y=x^{2}, y=x, y=0$, about the x-axis
(2) $y=x^{2}, y=4, x=0, x=2$, about the y-axis
(3) $x+y=1, x=0, y=0$, about the $x-a x i s$
(4) $x=y-y^{2}, x=0$, about the y-axis
(5) $y=2 x-x^{2}, y=0, x=0, x=1$, about the y-axis
(6) $y=x^{2}+1, y=3-x^{2}$, about the x-axis
(7) $2 y-x=0, y^{2}-x=0$, about the y-axis
(8) $y=\sqrt{x-1}, y=0, x=5$, about the y-axis
(9) $y=\cos x, y=\sin x, x=0, x=\frac{\pi}{4}$, about the x-axis
(10) $y=\frac{-1}{x}, y=0, x=1, y=3$, about the x-axis

