VOLUME-DISK AND WASHER METHODS

Figure 2

Definition 0.1. [Volumes of solids of revolution: Disk method: Perpendicular to the x-axis] Let \mathcal{R} be the region bounded by y = f(x), y = 0, x = a, and x = b. When this region is revolved about x-axis we get a solid \mathcal{S} . A cross-section through x perpendicular to the x-axis is a circular disk with radius equal to f(x). Hence the area of the cross-section $A(x) = \pi .(radius)^2 = \pi [f(x)]^2$. The Volume of \mathcal{S} is given by the following formula

$$V = \int_{a}^{b} A(x) \, dx = \int_{a}^{b} \pi [f(x)]^{2} \, dx.$$

Example 0.1. find the volume of the solid that is obtained when the region $y = \sqrt{x}$, y = 0, x = 0, and x = 2 is revolved about the x-axis

FIGURE 3

FIGURE 4

Solution:

Since we are rotating about the x-axis, we should integrate with respect to x. The cross-section at any $x \in [0, 2]$ perpendicular to the x-axis is a disk with radius \sqrt{x} . Then

$$V = \int_{a}^{b} \pi [f(x)]^{2} dx$$
$$= \int_{0}^{2} \pi [\sqrt{x}]^{2} dx$$
$$= \int_{0}^{2} \pi [x] dx$$
$$= \pi \left[\frac{1}{2}x^{2}\right]_{0}^{2}$$
$$= \pi \left[\frac{1}{2}4\right]$$
$$= 2\pi.$$

FIGURE 6

Definition 0.2. [Volumes of solids of revolution: Disk method: Perpendicular to the y-axis] Let \mathcal{R} be the region bounded by x = f(y), x = 0, y = c, and y = d. When this region is revolved about y-axis we get a solid \mathcal{S} . A cross-section through y perpendicular to the y-axis is a circular disk with radius equal to f(y). Hence the area of the cross-section $A(y) = \pi .(radius)^2 = \pi [f(y)]^2$. The Volume of \mathcal{S} is given by the following formula

$$V = \int_{c}^{d} A(y) \, dy = \int_{c}^{d} \pi [f(y)]^{2} \, dy.$$

Example 0.2. find the volume of the solid that is obtained when the region $y = x^3$, x = 0, and y = 8

is revolved about the y-axis

FIGURE 8

Solution:

Since we are rotating about the y-axis, we should integrate with respect to y. The cross-section at any $y \in [0, 8]$ perpendicular to the y-axis is a disk with radius $\sqrt[3]{y}$. Then

Note 0.1. Note that the area of an annular [region bounded by two circles one of radius r_1 and the other of radius r_2 with $r_1 < r_2$.] is $A = \pi [r_2^2 - r_1^2] = \pi [($ outer radius $)^2 - ($ inner radius $)^2]$.

Figure 11

Definition 0.3. [Volumes of solids of revolution: Washer method: Perpendicular to the x-axis]

Let \mathcal{R} be the region bounded by y = f(x), y = g(x), x = a, and x = b, where $f(x) \ge g(x)$, $\forall x \in [a, b]$. When this region is revolved about x-axis we get a solid \mathcal{S} . A cross-section taken perpendicular to the x-axis at any point x is an annular "washer-shaped" with inner radius equal to g(x) and outer radius equal to f(x). Hence the area of the cross-section

 $A(x) = \pi[(\text{ outer radius })^2 - (\text{ inner radius })^2] = \pi[[f(x)]^2 - [g(x)]^2].$

Then the **Volume** of S is given by the following formula

$$V = \int_{a}^{b} A(x) \, dx = \int_{a}^{b} \pi[(f(x))^{2} - (g(x))^{2}] \, dx.$$

A similar definition about the y-axis should be obtained by the reader.

Example 0.3. Find the volume of the solid obtained by revolved the region y = x and $y = x^2$ about the x-axis

FIGURE 12

FIGURE 13

Solution:

Since we are rotating about the x-axis, we should integrate with respect to x. The cross-section at any $x \in [0, 1]$ perpendicular to the x-axis is an annular "washer-shaped" with inner radius equal to x^2 and outer radius equal to x. Then

$$\begin{split} V &= \int_{a}^{b} \pi [(f(x))^{2} - (g(x))^{2}] \, dx \\ &= \int_{0}^{1} \pi [(x)^{2} - (x^{2})^{2}] \, dx \\ &= \int_{0}^{1} \pi \, [x^{2} - x^{4}] \, dx \\ &= \pi \left[\frac{1}{3} x^{3} - \frac{1}{5} x^{5} \right]_{0}^{1} \\ &= \pi \left[\frac{1}{3} - \frac{1}{5} \right] \\ &= \frac{2\pi}{15}. \end{split}$$

Example 0.4. Find the volume of the solid obtained by revolved the region y = x and $y = x^2$ about the

y-axis

FIGURE 15

Solution:

Since we are rotating about the y-axis, we should integrate with respect to y. The cross-section at any $y \in [0,1]$ perpendicular to the y-axis is an annular "washer-shaped" with inner radius equal to y and outer radius equal to \sqrt{y} . Then

$$V = \int_{c}^{d} \pi [(\text{ outer radius })^{2} - (\text{ inner radius})^{2}] dy$$
$$= \int_{0}^{1} \pi [(\sqrt{y})^{2} - (y)^{2}] dy$$
$$= \int_{0}^{1} \pi [y - y^{2}] dx$$
$$= \pi \left[\frac{1}{2} y^{2} - \frac{1}{3} y^{3} \right]_{0}^{1}$$
$$= \pi \left[\frac{1}{2} - \frac{1}{3} \right]$$
$$= \frac{\pi}{6}.$$

8

Exercises 0.1. In Exercises 1 - 10 find the volume of the solid obtained by rotating the region bounded

by the given curves about the given axis. Sketch the region, the solid, and a typical disk or "washer".

- (1) $y = x^2$, y = x, y = 0, about the x-axis
- (2) $y = x^2$, y = 4, x = 0, x = 2, about the y-axis
- (3) x + y = 1, x = 0, y = 0, about the x-axis
- (4) $x = y y^2$, x = 0, about the y-axis
- (5) $y = 2x x^2$, y = 0, x = 0, x = 1, about the y-axis
- (6) $y = x^2 + 1$, $y = 3 x^2$, about the x-axis
- (7) 2y x = 0, $y^2 x = 0$, about the y-axis
- (8) $y = \sqrt{x-1}, y = 0, x = 5, about the y-axis$
- (9) $y = \cos x, \ y = \sin x, \ x = 0, \ x = \frac{\pi}{4}, \ about \ the \ x-axis$
- (10) $y = \frac{-1}{x}$, y = 0, x = 1, y = 3, about the x-axis