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Abstract

A sequence of approximate solutions converging monotonically and quadratically to the unique solution of the forced Duffing
equation with integral boundary conditions is obtained. We also establish the convergence of order k (k �2) for the sequence of
iterates. The results obtained in this paper offer an algorithm to study the various practical phenomena such as prediction of the
possible onset of vascular diseases, onset of chaos in speech, etc. Some interesting observations are presented.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Integral boundary conditions for evolution problems have various applications in chemical engineering, thermoe-
lasticity, underground water flow and population dynamics, see for example [19,25,47,48]. Vascular diseases such as
atherosclerosis and aneurysms are becoming frequent disorders in the industrialized world due to sedentary way of life
and rich food. Causing more deaths than cancer, cardiovascular diseases are the leading cause of death in the world.
In recent years, computational fluid dynamics (CFD) techniques have been used increasingly by researchers seeking
to understand vascular hemodynamics. Most of the CFD-based hemodynamic studies so far have been conducted to
represent in vitro conditions within restrictive assumptions. These studies under in vitro conditions are well suited
to investigate basic phenomena related to fluid dynamics in vessels models but are not fully representative of actual
patient hemodynamic conditions. In fact, CFD methods possess the potential to augment the data obtained from in
vitro methods by providing a complete characterization of hemodynamic conditions (blood velocity and pressure as a
function of space and time) under precisely controlled conditions. However, specific difficulties in CFD studies of blood
flows are related to the boundary conditions. It is now recognized that the blood flow in a given district may depend
on the global dynamics of the whole circulation. Consequently, it is sometimes necessary to couple the 3D blood flow
solver to a low order model for the entire vascular system [26]. A second difficulty is related to the limitations of the
existing in vitro anemometry techniques. Indeed, the space resolution is far too coarse to tackle even the largest scales
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of the blood flow details. As a consequence, the boundary conditions (e.g. the instantaneous velocity profile at the inlet
section of the computed domain) are unknown for an in vitro blood flow computation. Most of the times, one assumes
some analytical space–time evolution for prescribing the inlet profile. Taylor et al. [49] propose to assume very long
circular vessel geometry upstream the inlet section so that the analytic solution of Womersley [51] can be prescribed.
However, it is not always justified to assume a circular cross-section. In order to cope with this problem, an alternative
approach prescribing integral boundary conditions is presented in Ref. [41]. The validity of this approach is verified
by computing both steady and pulsated channel flows for Womersley number upto 15. For more details of boundary
value problems involving integral boundary conditions, see for instance, [10,12,16–18,20,27,29,30,52] and references
therein.

Duffing equation is a well known nonlinear equation of applied science which is used as a powerful tool to discuss
some important practical phenomena such as periodic orbit extraction, nonuniformity caused by an infinite domain,
nonlinear mechanical oscillators, etc. Another important application of Duffing equation is in the field of the prediction
of diseases. A careful measurement and analysis of a strongly chaotic voice has the potential to serve as an early
warning system for more serious chaos and possible onset of disease. This chaos is stimulated with the help of Duffing
equation. In fact, the success at analyzing and predicting the onset of chaos in speech and its simulation by equations
such as the Duffing equation has enhanced the hope that we might be able to predict the onset of arrhythmia and heart
attacks someday. However, such predictions are based on the numerical solutions of the Duffing equation. One of the
efficient analytic methods for solving boundary value problems is the monotone iterative technique. This technique
coupled with the method of upper and lower solutions [8,21,28,32,43,44,50] manifests itself as an effective and flexible
mechanism that offers theoretical as well as constructive existence results in a closed set, generated by the lower
and upper solutions. In general, the convergence of the sequence of approximate solutions given by the monotone
iterative technique is at most linear [13,36]. To obtain a sequence of approximate solutions converging quadratically,
we use the method of quasilinearization (QSL) [11]. The nineties brought new dimensions to this technique when
Lakshmikantham [34,35] generalized the method of QSL by relaxing the convexity assumption. This development was
so significant that it attracted the attention of many researchers and the method was extensively developed and applied
to a wide range of initial and boundary value problems for different types of differential equations, for instance, see
[1–7,9,14,15,22–24,31,33,37–40,42,45,46] and the references therein. In view of its diverse applications, this approach
is quite an elegant and easier for application algorithms. To the best of our knowledge, the method of QSL has not been
developed for Duffing equation with integral boundary conditions.

In this paper, we apply a QSL technique to obtain the analytic approximation of the solution of the forced Duffing
equation with integral boundary conditions. In fact, we obtain a sequence of approximate solutions converging mono-
tonically and quadratically to the unique solution of the problem. We also discuss the rapid convergence of the sequence
of iterates.

2. Preliminaries

Consider the following boundary value problem:{
u′′(t) + �u′(t) + f (t, u) = 0, 0 < t < 1, � ∈ R − {0},
u(0) − �1u

′(0) = ∫ 1
0 q1(u(s)) ds, u(1) + �2u

′(1) = ∫ 1
0 q2(u(s)) ds,

(2.1)

where f : [0, 1] × R → R , qi : R → R (i = 1, 2) are continuous functions and �i are nonnegative constants. Clearly
the homogenous problem

u′′(t) + �u′(t) = 0, 0 < t < 1,

u(0) − �1u
′(0) = 0, u(1) + �2u

′(1) = 0,

has only the trivial solution. Thus, for any �, �1, �2 ∈ C[0, 1], the associated nonhomogeneous linear problem

u′′(t) + �u′(t) + �(t) = 0, 0 < t < 1,

u(0) − �1u
′(0) =

∫ 1

0
�1(s) ds, u(1) + �2u

′(1) =
∫ 1

0
�2(s) ds,
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has a unique solution u(t) which, by Green’s function method, can be written as

u(t) = G1(t) +
∫ 1

0
G(t, s)�(s) ds,

where G1(t) is the unique solution of the problem

u′′(t) + �u′(t) = 0, 0 < t < 1,

u(0) − �1u
′(0) =

∫ 1

0
�1(s) ds, u(1) + �2u

′(1) =
∫ 1

0
�2(s) ds,

and is given by

G1(t) = 1

(1 + ��1) − (1 − ��2)e−�

×
[
((−1 + ��2)e

−� + e−�t )

∫ 1

0
�1(s) ds + ((1 + ��1) − e−�t )

∫ 1

0
�2(s) ds

]
,

and

G(t, s) = �

{ [(1 − ��2) − e�(1−s)][(1 + ��1) − e−�t ], 0� t �s,

[(1 − ��2) − e�(1−t)][(1 + ��1) − e−�s], s� t �1,

� = e�s

�[(1 − ��2) − (1 + ��1)e�] .

We note that G(t, s) > 0 on (0, 1) × (0, 1).

Definition 2.1. A function � ∈ C2[0, 1] is a lower solution of (2.1) if

�′′(t) + ��′(t) + f (t, �(t))�0, 0 < t < 1,

�(0) − �1�
′(0)�

∫ 1

0
q1(�(s)) ds, �(1) + �2�

′(1)�
∫ 1

0
q2(�(s)) ds.

Similarly, � ∈ C2[0, 1] is an upper solution of (2.1) if the inequalities in the definition of lower solution are reversed.

Theorem 2.1. Let � and � be lower and upper solutions of the boundary value problem (2.1), respectively. Let f :
[0, 1] × R → R be such that fu(t, u) < 0 and qi : R → R are continuous functions satisfying a one sided Lipschitz
condition: qi(u) − qi(v)�Li(u − v), 0�Li < 1, i = 1, 2. Then �(t)��(t), t ∈ [0, 1].

Proof. Set x(t) = �(t) − �(t), t ∈ [0, 1] so that{
x(0) − �1x

′(0)�
∫ 1

0 [q1(�(s)) − q1(�(s))] ds,

x(1) + �2x
′(1)�

∫ 1
0 [q2(�(s)) − q2(�(s))] ds.

(2.2)

For the sake of contradiction, suppose that x(t) > 0 for t ∈ [0, 1]. Then x(t) has a positive maximum at some t0 ∈ [0, 1].
If t0 ∈ (0, 1), then x(t0) > 0, x′(t0) = 0 and x′′(t0)�0. In view of the decreasing property of the function f (t, u) in u,
it follows that

x′′(t0) + �x′(t0) = �′′(t0) + ��′(t0) − (�′′(t0) + ��′(t0))� − f (t0, �(t0)) + f (t0, �(t0)) > 0,

which is a contradiction. If t0 = 0, then x(0) > 0, x′(0) = 0. Using (2.2) together with the assumption that q1 satisfies
a one sided Lipschitz condition, we obtain the following contradiction:

x(0) = x(0) − �1x
′(0)�

∫ 1

0
[q1(�(s)) − q1(�(s))] ds

�L1 max
t∈[0,1] x(t) = L1x(0) < x(0).

A similar contradiction occurs for t0 = 1. Hence �(t)��(t), t ∈ [0, 1]. �
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Theorem 2.2. Assume that � and � are lower and upper solutions of the boundary value problem (2.1), respectively,
such that �(t)��(t), t ∈ [0, 1]. If f : [0, 1] × R → R and qi : R → R are continuous and qi satisfy a one sided
Lipschitz condition, then there exists a solution u(t) of (2.1) such that �(t)�u(t)��(t), t ∈ [0, 1].

Proof. Let us define F(t, u) and Qi(u) by

F(t, u) =

⎧⎪⎪⎨
⎪⎪⎩

f (t, �(t)) − u − �(t)

1 + |u − �| if u > �,

f (t, u) if ��u��,

f (t, �(t)) − u − �(t)

1 + |u − �| if u < �

and

Qi(u) =
{

qi(�(t)) if u > �,

qi(u(t)) if ��u��,

qi(�(t)) if u < �.

Since F(t, u) and Qi(u) are continuous and bounded, it follows that there exists a solution u(t) of the problem{
u′′(t) + �u′(t) + F(t, u) = 0, 0 < t < 1,

u(0) − �1u
′(0) = ∫ 1

0 Q1(u(s)) ds, u(1) + �2u
′(1) = ∫ 1

0 Q2(u(s)) ds.
(2.3)

In relation to (2.3), we have

�′′(t) + ��′(t) + F(t, �(t)) = �′′(t) + ��′(t) + f (t, �(t))�0, 0 < t < 1,

�(0) − �1�
′(0)�

∫ 1

0
q1(�(s)) ds =

∫ 1

0
Q1(�(s)) ds,

�(1) + �2�
′(1)�

∫ 1

0
q2(�(s)) ds =

∫ 1

0
Q2(�(s)) ds

and

�′′(t) + ��′(t) + F(t, �(t)) = �′′(t) + ��′(t) + f (t, �(t))�0, 0 < t < 1,

�(0) − �1�
′(0)�

∫ 1

0
q1(�(s)) ds =

∫ 1

0
Q1(�(s)) ds,

�(1) + �2�
′(1)�

∫ 1

0
q2(�(s)) ds =

∫ 1

0
Q2(�(s)) ds,

which imply that � and � are lower and upper solutions of (2.3), respectively. By definition of F(t, u), it follows that
any solution u ∈ [�, �] of (2.3) is indeed a solution of (2.1). Thus, we just need to show that any solution u(t) of (2.3)
satisfies �(t)�u(t)��(t), t ∈ [0, 1]. Let us assume that �(t) > u(t) on [0, 1]. Then the function y(t)= �(t)−u(t) has
a positive maximum at some t = t0 ∈ [0, 1]. If t0 ∈ (0, 1), then y(t0) > 0, y′(t0) = 0, y′′(t0)�0. On the other hand,

y′′(t0) + �y′(t0) = �′′(t0) + ��′(t0) − [u′′(t0) + �u′(t0)]
� − F(t0, �(t0)) + F(t0, u(t0))

= − f (t0, �(t0)) + f (t0, �(t0)) − u − �(t0)

1 + |u − �0| > 0,

which contradicts our assumption. If t0 = 0, then y(0) > 0, y′(0) = 0 and

y(0) = �(0) − u(0)��1y
′(0) +

∫ 1

0
[q1(�(s)) − Q1(u(s))] ds

=
∫ 1

0
[q1(�(s)) − Q1(u(s))] ds.
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If u(t) < �(t), then Q1(u(s)) = q1(�(s)) and consequently we have the contradiction y(0)�0. If u(t) > �(t), then
Q1(u(s)) = q1(�(s)). Hence, in view of the fact that q1 satisfies a one sided Lipschitz condition, we have q1(�(s)) −
Q1(u(s)) = (q1(�(s)) − q1(�(s)))�L1(�(s) − �(s)) so that y(0)�L1 maxt∈[0,1](�(t) − �(t)) = L1(�(0) − �(0))�0
which is again a contradiction. For �(t)�u(t)��(t), we also get the contradiction y(0)�0. In a similar manner, t0 =1
yields a contradiction. Thus, �(t)�u(t), t ∈ [0, 1]. On the same pattern, it can be shown that u(t)��(t), t ∈ [0, 1].
Hence we conclude that �(t)�u(t)��(t), t ∈ [0, 1]. �

Corollary 2.1. Let f : [0, 1] × R → R be such that fu(t, u) < 0 and qi : R → R are continuous functions satisfying
a one sided Lipschitz condition. Then the solution of (2.1) is unique.

3. Main results

Theorem 3.1. Assume that

(A1) � and � ∈ C2[0, 1] are, respectively, lower and upper solutions of (2.1) such that �(t)��(t), t ∈ [0, 1];
(A2) f (t, u) ∈ C2([0, 1] × R) be such that fu(t, u) < 0 and (fuu(t, u) + 	uu(t, u))�0, where 	uu(t, u)�0 for some

continuous function 	(t, u) on [0, 1] × R;
(A3) qi ∈ C2(R) be such that 0�q ′

i (u) < 1, and q ′′
i (u)�0, i = 1, 2.

Then, there exists a sequence {�n} of approximate solutions converging monotonically and quadratically to the unique
solution of the problem (2.1).

Proof. Let F : [0, 1] × R → R be defined by F(t, u) = f (t, u) + 	(t, u) so that Fuu(t, u)�0. Using the generalized
mean value theorem together with (A2) and (A3), we obtain

f (t, u)�f (t, v) + Fu(t, v)(u − v) + 	(t, v) − 	(t, u), (3.1)

qi(u)�qi(v) + q ′
i (v)(u − v), u, v ∈ R. (3.2)

We set

g(t, u, v) = f (t, v) + Fu(t, v)(u − v) + 	(t, v) − 	(t, u), (3.3)

and note that gu(t, u, v) = [Fu(t, v) − 	u(t, u)]�[Fu(t, u) − 	u(t, u)] = fu(t, u) < 0 with{
f (t, u)�g(t, u, v),

f (t, u) = g(t, u, u).
(3.4)

Let us define

Qi(u, v) = qi(v) + q ′
i (v)(u − v), (3.5)

so that 0�(�/�u)Qi(u, v) = q ′
i < 1 and{

qi(u)�Qi(u, v),

qi(u) = Qi(u, u).
(3.6)

Now, we fix �0 = � and consider the problem⎧⎨
⎩

u′′(t) + �u′(t) + g(t, u, �0) = 0, 0 < t < 1,

u(0) − �1u
′(0) = ∫ 1

0 Q1(u(s), �0(s)) ds,

u(1) + �2u
′(1) = ∫ 1

0 Q2(u(s), �0(s)) ds.

(3.7)

Using (A1), (3.4) and (3.6), we obtain

�′′
0(t) + ��′

0(t) + g(t, �0, �0) = �′′
0(t) + ��′

0(t) + f (t, �0)�0, 0 < t < 1,
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�0(0) − �1�
′
0(0)�

∫ 1

0
q1(�0(s)) ds =

∫ 1

0
Q1(�0(s), �0(s)) ds,

�0(1) + �2�
′
1(0)�

∫ 1

0
q2(�0(s)) ds =

∫ 1

0
Q2(�0(s), �0(s)) ds

and

�′′(t) + ��′(t) + g(t, �, �0)��′′(t) + ��′(t) + f (t, �)�0, 0 < t < 1,

�(0) − �1�
′(0)�

∫ 1

0
q1(�(s)) ds�

∫ 1

0
Q1(�(s), �0(s)) ds,

�(1) + �2�
′(1)�

∫ 1

0
q2(�(s)) ds�

∫ 1

0
Q2(�(s), �0(s)) ds,

which imply that �0 and � are, respectively, lower and upper solutions of (3.7). It follows by Theorems 2.1 and 2.2 that
there exists a unique solution �1 of (3.7) such that

�0(t)��1(t)��(t), t ∈ [0, 1].
Next, we consider⎧⎨

⎩
u′′(t) + �u′(t) + g(t, u, �1) = 0, 0 < t < 1,

u(0) − �1u
′(0) = ∫ 1

0 Q1(u(s), �1(s)) ds,

u(1) + �2u
′(1) = ∫ 1

0 Q2(u(s), �1(s)) ds.

(3.8)

Using the earlier arguments, it can be shown that �1 and � are lower and upper solutions of (3.8), respectively and
hence by Theorems 2.1 and 2.2, there exists a unique solution �2 of (3.8) such that

�1(t)��2(t)��(t), t ∈ [0, 1].
Continuing this process successively yields a sequence {�n} of solutions satisfying

�0(t)��1(t)��2(t)� · · · ��n ��(t), t ∈ [0, 1],
where the element �n of the sequence {�n} is a solution of the problem

u′′(t) + �u′(t) + g(t, u, �n−1) = 0, 0 < t < 1,

u(0) − �1u
′(0) =

∫ 1

0
Q1(u(s), �n−1(s)) ds,

u(1) + �2u
′(1) =

∫ 1

0
Q2(u(s), �n−1(s)) ds,

and is given by

�n(t) = −(1 − ��2)e
−� + e−�t

(1 + ��1) − (1 − ��2)e−�

∫ 1

0
Q1(�n(s), �n−1(s)) ds

+ (1 + ��1) − e−�t

(1 + ��1) − (1 − ��2)e−�

∫ 1

0
Q2(�n(s), �n−1(s)) ds

+
∫ 1

0
G(t, s)g(s, �n(s), �n−1(s)) ds. (3.9)
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Using the fact that [0, 1] is compact and the monotone convergence of the sequence {�n} is pointwise, it follows by the
standard arguments (Arzela Ascoli convergence criterion, Dini’s theorem [32,38]) that the convergence of the sequence
is uniform. If u(t) is the limit point of the sequence, taking the limit n → ∞ in (3.9), we obtain

u(t) = −(1 − ��2)e
−� + e−�t

(1 + ��1) − (1 − ��2)e−�

∫ 1

0
q1(u(s)) ds

+ (1 + ��1) − e−�t

(1 + ��1) − (1 − ��2)e−�

∫ 1

0
q2(u(s)) ds +

∫ 1

0
G(t, s)f (s, u(s)) ds.

Thus, u(t) is a solution of (2.1). Now, we show that the convergence of the sequence is quadratic. For that we set
en(t) = (u(t) − �n(t))�0, t ∈ [0, 1]. In view of (A2) and (3.3), it follows by Taylor’s theorem that

e′′
n(t) + �e′

n(t) = u′′ + �u′ − (�′′
n + ��′

n) = −f (t, u) + g(t, �n, �n−1)

= − f (t, u) + f (t, �n−1) + Fu(t, �n−1)(�n − �n−1) + 	(t, �n−1) − 	(t, �n)

= − fu(t, c1)(u − �n−1) − Fu(t, �n−1)(u − �n) + Fu(t, �n−1)(u − �n−1)

− 	u(t, c2)(�n − �n−1)

= [−fu(t, c1) + Fu(t, �n−1) − 	u(t, c2)]en−1 + [−Fu(t, �n−1) + 	u(t, c2)]en

= [−Fu(t, c1) + Fu(t, �n−1) + 	u(t, c1) − 	u(t, c2)]en−1

+ [−Fu(t, �n−1) + 	u(t, c2)]en

�[−Fu(t, u) + Fu(t, �n−1) + 	u(t, �n−1) − 	u(t, �n)]en−1

+ [−Fu(t, �n−1) + 	u(t, �n−1)]en

= [−Fuu(t, c3) − 	uu(t, c4)]e2
n−1 − fu(t, �n−1)en

� − [A + B]e2
n−1

= − M‖en−1‖2, (3.10)

where �n−1 �c1, c3 �u, �n−1 �c2, c4 ��n, A is a bound on ‖Fuu‖, B is a bound on ‖	uu‖ for t ∈ (0, 1) and M =A+B.
Further, in view of (3.5), we have

en(0) − �1e
′
n(0) =

∫ 1

0
[q1(u(s)) − Q1(�n(s), �n−1(s))] ds

=
∫ 1

0
[q1(u(s)) − q1(�n−1(s)) − q ′

1(�n−1(s))(�n − �n−1)] ds

=
∫ 1

0

[
q ′

1(�n−1(s))en(s) + 1

2
q ′′

2 (
1)e
2
n−1(s)

]
ds,

en(1) + �2e
′
n(1) =

∫ 1

0
[q2(u(s)) − Q2(�n(s), �n−1(s))] ds

=
∫ 1

0

[
q ′

2(�n−1(s))en(s) + 1

2
q ′′

2 (
2)e
2
n−1(s)

]
ds,

where �n−1 �
1, 
2 �u. In view of (A3), there exist �i < 1 and Mi �0 such that q ′
i (�n−1(s))��i and 1

2q ′′
i (
i )�Mi(i =

1, 2). Let � = max{�1, �2} and M3 = max{M1, M2}, then

{
en(0) − �1e

′
n(0)��

∫ 1
0 en(s) ds + M3

∫ 1
0 e2

n−1(s) ds,

en(1) + �2e
′
n(1)��

∫ 1
0 en(s) ds + M3

∫ 1
0 e2

n−1(s) ds.
(3.11)
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Using the estimates (3.10) and (3.11), we obtain

en(t) = −(1 − ��2)e
−� + e−�t

(1 + ��1) − (1 − ��2)e−�

∫ 1

0
[q1(u(s)) − Q1(�n(s), �n−1(s))] ds

+ (1 + ��1) − e−�t

(1 + ��1) − (1 − ��2)e−�

∫ 1

0
[q2(u(s)) − Q2(�n(s), �n−1(s))] ds

+
∫ 1

0
G(t, s)[f (s, u(s)) − g(t, �n, �n−1)] ds

� −(1 − ��2)e
−� + e−�t

(1 + ��1) − (1 − ��2)e−�

[
�
∫ 1

0
en(s) ds + M3

∫ 1

0
e2
n−1(s) ds

]

+ (1 + ��1) − e−�t

(1 + ��1) − (1 − ��2)e−�

[
�
∫ 1

0
en(s) ds + M3

∫ 1

0
e2
n−1(s) ds

]

−
∫ 1

0
G(t, s)[e′′

n(s) + �e′
n(s)] ds

��
∫ 1

0
en(s) ds + M3

∫ 1

0
e2
n−1(s) ds + M‖en−1‖2

∫ 1

0
G(t, s) ds

��‖en‖ + M3‖en−1‖2 + M4‖en−1‖2 = �‖en‖ + M5‖en−1‖2,

where M4 provides a bound on M
∫ 1

0 G(t, s) and M5 = M4 + M3. Taking the maximum over [0, 1], we get

‖en‖� M5

1 − �
‖en−1‖2,

where ‖u‖ = {|u(t)| : t ∈ [0, 1]}. This establishes the quadratic convergence of the sequence of iterates. �

Theorem 3.2 (Higher order convergence). Assume that

(B1) � and � ∈ C2[0, 1] are, respectively, lower and upper solutions of (2.1) such that �(t)��(t), t ∈ [0, 1];
(B2) f (t, u) ∈ Ck([0, 1]×R) be such that (�p/�up)fu < 0 (p=1, 2, 3, . . . , k−1) and (�k/�uk)(f (t, u)+	(t, u))�0

with (�k/�uk)	(t, u)�0 for some continuous function 	(t, u) on Ck[[0, 1] × R];
(B3) qj ∈ Ck(R) be such that (di/dui)qj (u)�M/(� − �)i−1(i = 1, 2, . . . , k − 1, j = 1, 2) and (dk/duk)qj (u)�0,

where M < 1
3 .

Then, there exists a monotone sequence {�n} of approximate solutions converging uniformly and rapidly to the unique
solution of the problem (2.1) with the order of convergence k (k�2).

Proof. Using Taylor’s theorem and the assumptions (B2) and (B3), we obtain

f (t, u)�
k−1∑
i=0

�i

�ui
f (t, v)

(u − v)i

i! − �k

�uk
	(t, �)

(u − v)k

k! (3.12)

and

qj (u)�
k−1∑
i=0

di

dui
qj (v)

(u − v)i

i! (3.13)
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where ��v���u��. We set

h(t, u, v) =
k−1∑
i=0

�i

�ui
f (t, v)

(u − v)i

i! − �k

�uk
	(t, �)

(u − v)k

k! , (3.14)

Q∗
j (u, v) =

k−1∑
i=0

di

dui
qj (v)

(u − v)i

i! . (3.15)

Observe that h(t, u, v) and Q∗
j (u, v) are continuous, bounded and satisfy the following relations:{

f (t, u)�h(t, u, v),

f (t, u) = h(t, u, u),
(3.16)

{
qj (u)�Q∗

j (u, v),

qj (u) = Q∗
j (u, u),

(3.17)

hu(t, u, v) =
k−1∑
i=1

�i

�ui
f (t, v)

(u − v)i−1

(i − 1)! − �k

�uk
	(t, �)

(u − v)k−1

(k − 1)! �0,

�

�u
Q∗

j (u, v) =
k−1∑
i=1

di

dui
qj (v)

(u − v)i−1

(i − 1)! �
k−1∑
i=1

M

(� − �)i−1

(� − �)i−1

(i − 1)!

�M

(
3 − 1

2k−2

)
< 1.

Letting �0 = �, we consider the problem⎧⎨
⎩

u′′(t) + �u′(t) + h(t, u, �0) = 0, 0 < t < 1,

u(0) − �1u
′(0) = ∫ 1

0 Q∗
1(u(s), �0(s)) ds,

u(1) + �2u
′(1) = ∫ 1

0 Q∗
2(u(s), �0(s)) ds.

(3.18)

Using (B1), (3.16) and (3.17), we obtain

�′′
0(t) + ��′

0(t) + h(t, �0, �0) = �′′
0(t) + ��′

0(t) + f (t, �0)�0, 0 < t < 1,

�0(0) − �1�
′
0(0)�

∫ 1

0
q1(�0(s)) ds =

∫ 1

0
Q∗

1(�0(s), �0(s)) ds,

�0(1) + �2�
′
1(0)�

∫ 1

0
q2(�0(s)) ds =

∫ 1

0
Q∗

2(�0(s), �0(s)) ds

and

�′′(t) + ��′(t) + h(t, �, �0)��′′(t) + ��′(t) + f (t, �)�0, 0 < t < 1,

�(0) − �1�
′(0)�

∫ 1

0
q1(�(s)) ds�

∫ 1

0
Q∗

1(�(s), �0(s)) ds,

�(1) + �2�
′(1)�

∫ 1

0
q2(�(s)) ds�

∫ 1

0
Q∗

2(�(s), �0(s)) ds.

Thus, it follows by definition that �0 and � are, respectively, lower and upper solutions of (3.18). As before, by
Theorems 2.1 and 2.2, there exists a unique solution �1 of (3.18) such that

�0(t)��1(t)��(t), t ∈ [0, 1].
Continuing this process successively, we obtain a monotone sequence {�n} of solutions satisfying

�0(t)��1(t)��2(t)� · · · ��n ��(t), t ∈ [0, 1],
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where the element �n of the sequence {�n} is a solution of the problem

u′′(t) + �u′(t) + h(t, u, �n−1) = 0, 0 < t < 1,

u(0) − �1u
′(0) =

∫ 1

0
Q∗

1(u(s), �n−1(s)) ds,

u(1) + �2u
′(1) =

∫ 1

0
Q∗

2(u(s), �n−1(s)) ds,

and is given by

�n(t) = −(1 − ��2)e
−� + e−�t

(1 + ��1) − (1 − ��2)e−�

∫ 1

0
Q∗

1(�n(s), �n−1(s)) ds

+ (1 + ��1) − e−�t

(1 + ��1) − (1 − ��2)e−�

∫ 1

0
Q∗

2(�n(s), �n−1(s)) ds

+
∫ 1

0
G(t, s)h(s, �n(s), �n−1(s)) ds.

Employing the arguments used in the proof of Theorem 3.1, we conclude that the sequence {�n} converges uniformly
to the unique solution u(t) of (2.1).

In order to prove that the convergence of the sequence is of order k(k�2), we set en(t) = u(t) − �n(t) and an(t) =
�n+1(t) − �n(t), t ∈ [0, 1] and note that

en(t)�0, an(t)�0, en+1(t) = en(t) − an(t), ek
n �ak

n.

Using Taylor’s theorem, we find that

e′′
n(t) + �e′

n(t) = u′′(t) + �u′(t) − (�′′
n(t) + ��′

n(t))

= − f (t, u(t)) + h(t, �n, �n−1)

= − f (t, u(t)) +
k−1∑
i=0

�i

�ui
f (t, �n−1)

ai
n−1

i! − �k

�uk
	(t, �)

ak
n−1

k!

= − f (t, u(t)) + f (t, �n−1(t)) +
k−1∑
i=1

�i

�ui
f (t, �n−1)

ai
n−1

i! − �k

�uk
	(t, �)

ak
n−1

k!

= − f (t, u(t)) + f (t, �n−1(t)) +
k−1∑
i=1

�i

�ui
f (t, �n−1)

ei
n−1

i!

−
k−1∑
i=1

�i

�ui
f (t, �n−1)

(ei
n−1 − ai

n−1)

i! − �k

�uk
	(t, �)

ak
n−1

k!

= − �k

�uk
f (t, �)

ek
n−1

k! −
k−1∑
i=1

�i

�ui
f (t, �n−1)

(en−1 − an−1)

i!
i−1∑
l=0

ei−1−l
n−1 al

n−1

− �k

�uk
	(t, �)

ak
n−1

k!

� −
(

�k

�uk
f (t, �) + �k

�uk
	(t, �)

)
ek
n−1

k! −
k−1∑
i=1

�i

�ui
f (t, �n−1)

en

i!
i−1∑
l=0

ei−1−l
n−1 al

n−1

= − �k

�uk
F (t, �))

ek
n−1

k! −
k−1∑
i=1

�i

�ui
f (t, �n−1)

en

i!
i−1∑
l=0

ei−1−l
n−1 al

n−1

� − N
‖en−1‖k

k! , (3.19)
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where N is a bound for (�k/�uk)F (t, �)). Again, by Taylor’s theorem and using (3.15), we obtain

qj (u(s)) − Q∗
j (�n(s), �n−1(s)) =

k−1∑
i=0

di

dui
qj (�n−1)

(u − �n−1)
i

i! + dk

duk
qj (c)

(u − �n−1)
k

k!

−
k−1∑
i=0

di

dui
qj (�n−1)

(�n − �n−1)
i

i!

=
(

k−1∑
i=1

di

dui
qj (�n−1)

1

i!
i−1∑
l=0

ei−1−l
n−1 al

n−1

)
en + dk

duk
qj (c)

(en−1)
k

k!

�j (t)en(t) + M

�k−1

ek
n−1

k! �j (t)en(t) + M

�k−1

‖en−1‖k

k! ,

where

j (t) =
k−1∑
i=1

di

dui
qj (�n−1)

1

i!
i−1∑
l=0

ei−1−l
n−1 al

n−1, � = max
t∈[0,1] �(t) − min

t∈[0,1] �(t).

Making use of (B̄3), we find that

j (t)�
k−1∑
i=1

M

(� − �)i−1

1

i!
i−1∑
l=0

ei−1−l
n−1 al

n−1 �
k−1∑
i=1

M

(� − �)i−1

1

(i − 1)! (� − �)i−1 < 3M < 1.

Thus, we can find � < 1 such that j (t)��, t ∈ [0, 1] and consequently, we have⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

en(0) − �1e
′
n(0) = ∫ 1

0 [q1(u(s)) − Q∗
1(�n(s), �n−1(s))] ds

� �
∫ 1

0 en(s) ds + M

�k−1k! ‖en−1‖k,

en(1) + �2e
′
n(1) = ∫ 1

0 [q2(u(s)) − Q∗
2(�n(s), �n−1(s))] ds

� �
∫ 1

0 en(s) ds + M

�k−1k! ‖en−1‖k.

(3.20)

By virtue of (3.19) and (3.20), we have

en(t) = −(1 − ��2)e
−� + e−�t

(1 + ��1) − (1 − ��2)e−�

∫ 1

0
[q1(u(s)) − Q∗

1(�n(s), �n−1(s))] ds

+ (1 + ��1) − e−�t

(1 + ��1) − (1 − ��2)e−�

∫ 1

0
[q2(u(s)) − Q∗

2(�n(s), �n−1(s))] ds

+
∫ 1

0
G(t, s)[f (s, u(s)) − h(t, �n, �n−1)] ds

� −(1 − ��2)e
−� + e−�t

(1 + ��1) − (1 − ��2)e−�

[
�
∫ 1

0
en(s) ds + M

�k−1k!
∫ 1

0
ek
n−1(s) ds

]

+ (1 + ��1) − e−�t

(1 + ��1) − (1 − ��2)e−�

[
�
∫ 1

0
en(s) ds + M

�k−1k!
∫ 1

0
ek
n−1(s) ds

]

−
∫ 1

0
G(t, s)[e′′

n(s) + �e′
n(s)] ds

��
∫ 1

0
en(s) ds + M

�k−1k!
∫ 1

0
ek
n−1(s) ds + N

k! ‖en−1‖k

∫ 1

0
G(t, s) ds

��‖en‖ + M

�k−1k! ‖en−1‖k + N1

k! ‖en−1‖k = �‖en‖ + N2‖en−1‖k ,
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where N2 = (M + �k−1N1)/�k−1k! and N1 is a bound on N
∫ 1

0 G(t, s). Taking the maximum over [0, 1] and solving
the above expression algebraically, we obtain

‖en‖� N2

1 − �
‖en−1‖k .

This completes the proof. �

Example. Consider the boundary value problem

u′′(t) + �u′(t) − teu+1 − 2u = 0, t ∈ [0, 1], � < 0,

u(0) − �1u
′(0) =

∫ 1

0
(cu(s) − 1)/2 ds,

u(1) + �2u
′(1) =

∫ 1

0
(cu(s) + 1) ds, (3.21)

where �1 �(1/2−c/4), �2 �c/2, 0�c < 1. It can easily be verified that �(t)=−1 and �(t)= t are, respectively, lower
and upper solutions of (3.21). Also the assumptions of Corollary 2.1 are satisfied. Hence we can obtain a monotone
sequence {�n} of approximate solutions converging uniformly and quadratically (rapidly) to the unique solution of the
problem (3.21).

4. Conclusions

We have developed an algorithm for the analytic solution of the forced Duffing equation subject to integral boundary
conditions. The results established in this paper provide a diagnostic tool to predict the possible onset of diseases such
as cardiac disorder and chaos in speech by varying the nonlinear forcing functions f (t, u) and qi(u) appropriately in
(2.1). The present study is equally useful in other applied sciences as mentioned in the introduction of the paper. If the
nonlinearity f (t, u) in the forced Duffing equation is of convex type, then the assumption (A2) in Theorem 3.1 reduces
to fuu(t, u)�0 and (B2) in Theorem 3.2 becomes (�k/�uk)f (t, u)�0 (that is, 	(t, u) = 0 in this case). The existence
results for Duffing equation with Dirichlet boundary conditions can be recorded by taking q1(·)=0=q2(·) and �1=0=�2
in (2.1) and in fact this fixation improves the results obtained in [42,15]. Further, for q1(·) = a, q2(·) = b (a and b are
constants) and �1 =0=�2 in (2.1), our results become the existence results for Duffing equation with nonhomogeneous
Dirichlet boundary conditions and thereby generalize the work presented in [5]. If we take �1 = 0 = �2 in (2.1), our
problem reduces to the Dirichlet boundary value problem involving the forced Duffing equation with integral boundary
conditions. In case, we fix q1(·) = a, q2(·) = b in (2.1), the existence results for the forced Duffing equation with
separated boundary conditions appear as a special case of our main results and also generalize the results of [33].
Thus, several interesting observations can be presented by choosing the parameters and functions involved in (2.1)
appropriately.
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