
Existence of Solutions of the Forced Duffing Equation with
Non-convex Integral Boundary Conditions

Ahmed Alsaedi
Department of Mathematics,

Faculty of Science, King Abdulaziz University,
P.O. Box. 80257, Jeddah 21589, Saudi Arabia

E-mail: aalsaedi@hotmail.com

Abstract

In this paper, we apply the generalized quasilinearization technique to
obtain a monotone sequence of approximate solutions converging monotoni-
cally and quadratically to the unique solution of the forced Duffing equation
with non-convex type integral boundary conditions.
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1 Introduction

Boundary value problems involving integral boundary conditions have received con-
siderable attention, see for instance, [1-8] and references therein. Integral boundary
conditions for evolution problems have various applications in chemical engineering,
thermoelasticity, underground water flow and population dynamics, see for example,
[9-11].
In this paper, we apply the generalized quasilinearization technique to obtain a
monotone sequence of approximate solutions that converges quadratically to the
unique solution of the forced Duffing equation with non-convex type integral bound-
ary conditions. The importance of the work lies in the fact that the convex-
ity/concavity assumption on the nonlinear functions in integral boundary conditions
has been relaxed. The method of quasilinearization provides an elegant and easier
approach for obtaining sequences of approximate solutions converging monotonically
and quadratically to the unique solution of the problem at hand. For the details of
this method, see [12-21] and the references therein.

2 Preliminaries and basic results

Consider the following boundary value problem{
u′′(t) + σu′(t) + f(t, u) = 0, 0 < t < 1, σ ∈ R− {0},

u(0)− µ1u
′(0) =

∫ 1

0
h1(u(s))ds, u(1) + µ2u

′(1) =
∫ 1

0
h2(u(s))ds,

(2.1)



where f : [0, 1]×R → R, hi : R → R (i = 1, 2) are continuous functions and µi are
nonnegative constants. Clearly the homogenous problem

u′′(t) + σu′(t) = 0, 0 < t < 1,

u(0)− µ1u
′(0) = 0, u(1) + µ2u

′(1) = 0,

has only the trivial solution. Therefore, by Green’s function method, the solution
of (2.1) can be written as

u(t) = G1(t) +

∫ 1

0

G(t, s)f(s, u(s))ds,

where

G1(t) =
1

(1 + σµ1)− (1− σµ2)e−σ

× [((−1 + σµ2)e
−σ + e−σt)

∫ 1

0

h1(u(s))ds+ ((1 + σµ1)− e−σt)

∫ 1

0

h2(u(s))ds],

and

G(t, s) = Λ

{
[(1− σµ2)− eσ(1−s)][(1 + σµ1)− e−σt], 0 ≤ t ≤ s,
[(1− σµ2)− eσ(1−t)][(1 + σµ1)− e−σs], s ≤ t ≤ 1,

Λ =
eσs

σ[(1− σµ2)− (1 + σµ1)eσ]
.

We note that G(t, s) > 0 on (0, 1)× (0, 1).

Definition 2.1. A function α ∈ C2[0, 1] is a lower solution of (2.1) if

α′′(t) + σα′(t) + f(t, α(t)) ≥ 0, 0 < t < 1,

α(0)− µ1α
′(0) ≤

∫ 1

0

h1(α(s))ds, α(1) + µ2α
′(1) ≤

∫ 1

0

h2(α(s))ds.

Similarly, β ∈ C2[0, 1] is an upper solution of (2.1) if the inequalities in the
definition of lower solution are reversed.
We need the following known results [21] to prove the main result.

Theorem 2.1. Let α and β be lower and upper solutions of the boundary value
problem (2.1) respectively. Let f : [0, 1] × R → R be such that fu(t, u) < 0 and
hi : R → R are continuous functions satisfying one sided Lipschitz condition:
hi(u)− hi(v) ≤ Li(u− v), 0 ≤ Li < 1, i = 1, 2. Then α(t) ≤ β(t).

Theorem 2.2. Assume that α and β are lower and upper solutions of the boundary
value problem (2.1) respectively such that α(t) ≤ β(t). If f : [0, 1] × R → R and
hi : R → R are continuous and satisfy one sided Lipschitz condition, then there
exists a solution u(t) of (2.1) such that α(t) ≤ u(t) ≤ β(t), t ∈ [0, 1].
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3 Main result

Theorem 3.1. Assume that

(A1) α and β ∈ C2[0, 1] are respectively lower and upper solutions of (2.1) such
that α(t) ≤ β(t), t ∈ [0, 1].

(A2) f(t, x) ∈ C2([0, 1] × R) be such that fx < 0 and (fxx(t, x) + φxx(t, x)) ≥ 0,
where φxx(t, x)) ≥ 0 for some continuous function φ(t, x) on [0, 1]× R.

(A3) hi ∈ C2(R) (i = 1, 2) are nondecreasing, 0 ≤ h′i(x) < 1 and h′′i (x)+ψ
′′
i (x) ≥ 0,

for some continuous function ψ(x) on R.

Then, there exists a monotone sequence {wn} of solutions converging uniformly
and quadratically to the unique solution of the problem.

Proof. Define F : [0, 1] × R → R, µ : R → R by F (t, x) = f(t, x) + φ(t, x)
and µi(x) = hi(x) +ψi(x). Using the generalized mean value theorem together with
(A2), we obtain

f(t, x) ≥ f(t, y) + Fx(t, y)(x− y) + φ(t, y)− φ(t, x), (3.1)

hi(x) ≥ hi(y) + µ′i(y)(x− y) + ψi(y)− ψi(x), (3.2)

where x, y ∈ R. Now, we set

g(t, x, y) = f(t, y) + Fx(t, y)(x− y) + φ(t, y)− φ(t, x), (3.3)

Hi(x, y) = hi(y) + µ′i(y)(x− y) + ψi(y)− ψi(x), (3.4)

and note that gx(t, x, y) < 0, 0 ≤ ∂
∂x
Hi(x, y) < 1, and{

f(t, x) ≥ g(t, x, y),
f(t, x) = g(t, x, x),

(3.5)

{
hi(x) ≥ Hi(x, y),
hi(x) = Hi(x, x).

(3.6)

Fixing α = w0, we consider the problem

x′′(t) + kx′(t) + g(t, x, w0) = 0, t ∈ [0, 1]

x(0)− k1x
′(0) =

∫ 1

0

H1(x(s), w0(s))ds, (3.7)

x(1) + k2x
′(1) =

∫ 1

0

H2(x(s), w0(s))ds.

Using (A1), (3.5) and (3.6), we obtain

w′′
0(t) + kw′

0(t) + g(t, w0, w0) = w′′
0(t) + kw′

0(t) + f(t, w0) ≥ 0, t ∈ [0, 1],
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w0(0)− k1w
′
0(0) ≤

∫ 1

0

h1(w0(s))ds =

∫ 1

0

H1(w0(s), w0(s))ds,

w0(1) + k2w
′
1(0) ≤

∫ 1

0

h2(w0(s))ds =

∫ 1

0

H2(w0(s), w0(s))ds,

and

β′′(t) + kβ′(t) + g(t, β, w0) ≤ β′′(t) + kβ′(t) + f(t, β) ≤ 0, t ∈ [0, 1],

β(0)− k1β
′(0) ≥

∫ 1

0

h1(β(s))ds ≥
∫ 1

0

H1(β(s), w0(s))ds,

β(1) + k2β
′(1) ≥

∫ 1

0

h2(β(s))ds ≥
∫ 1

0

H2(β(s), w0(s))ds,

which imply that w0 and β are respectively lower and upper solutions of (3.7). It
follows by Theorems 2.1 and 2.2 that there exists the unique solution w1 of (3.7)
such that

w0(t) ≤ w1(t) ≤ β(t), t ∈ [0, 1].

Next, consider the problem

x′′(t) + kx′(t) + g(t, x, w1) = 0, t ∈ [0, 1],

x(0)− k1x
′(0) =

∫ 1

0

H1(x(s), w1(s))ds, (3.8)

x(1) + k2x
′(1) =

∫ 1

0

H2(x(s), w1(s))ds.

Following the earlier procedure, it is straightforward to show that w1 and β are lower
and upper solutions of (3.8) and hence, by Theorems 2.1 and 2.2, there exists the
unique solution w2 of (3.8) such that

w1(t) ≤ w2(t) ≤ β(t), t ∈ [0, 1].

Continuing this process successively, we obtain a monotone sequence {wn} of solu-
tions satisfying

w0(t) ≤ w1(t) ≤ w2(t) ≤ ... ≤ wn ≤ β(t), t ∈ [0, 1],

where the element wn of the sequence {wn} is a solution of the problem

x′′(t) + kx′(t) + g(t, x, wn−1) = 0, t ∈ [0, 1],

x(0)− k1x
′(0) =

∫ 1

0

H1(x(s), wn−1(s))ds,

x(1) + k2x
′(1) =

∫ 1

0

H2(x(s), wn−1(s))ds,
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and is given by

wn(t) = Pn(t) +

∫ 1

0

G(t, s)g(s, wn(s), wn−1(s))ds, (3.9)

where

Pn(t) =
−(1− kk2)e

−k + e−kt

(1 + kk1)− (1− kk2)e−k

∫ 1

0

H1(wn(s), wn−1(s))ds

+
(1 + kk1)− e−kt

(1 + kk1)− (1− kk2)e−k

∫ 1

0

H2(wn(s), wn−1(s))ds,

Using the fact that [0, 1] is compact and the monotone convergence of the sequence
{wn} is pointwise, it follows that the convergence of the sequence is uniform. If x(t)
is the limit point of the sequence, passing onto the limit n→∞, (3.9) yields

x(t) = P (t) +

∫ 1

0

G(t, s)f(s, x(s))ds,

where

P (t) =
−(1− kk2)e

−k + e−kt

(1 + kk1)− (1− kk2)e−k

∫ 1

0

h1(x(s))ds

+
(1 + kk1)− e−kt

(1 + kk1)− (1− kk2)e−k

∫ 1

0

h2(x(s))ds.

Thus, x(t) is a solution of (2.1). Now, we show that the convergence of the sequence
is quadratic. For that, we set en(t) = x(t) − wn(t) ≥ 0, t ∈ [0, 1]. Using Taylor’s
theorem and (3.4), we obtain

en(0)− k1e
′
n(0) =

∫ 1

0

[h1(x(s))−H1(wn(s), wn−1(s))]ds

=

∫ 1

0

[h1(x(s))− h1(wn−1(s))− µ′1(wn−1(s))(wn − wn−1)− ψ1(wn−1) + ψ1(wn)]ds

=

∫ 1

0

[h′1(γ1)(x− wn−1)− µ′1(wn−1)(x− wn−1) + µ′1(wn−1)(x− wn)

+ ψ′
1(γ2)(wn − wn−1)]ds

=

∫ 1

0

{[h′1(γ1)en−1 − µ′1(wn−1)en−1 + µ′1(wn−1)en + ψ′
1(γ2)en−1 − ψ′

1(γ2)en]ds

=

∫ 1

0

{[h′1(γ1)− µ′1(wn−1) + ψ′
1(γ2)]en−1 + [µ′1(wn−1)− ψ′

1(γ2)]en}ds

≤
∫ 1

0

{[µ′1(γ1)− ψ′
1(γ1)− µ′1(wn−1) + ψ′

1(γ2)]en−1 + [µ′1(wn−1)− ψ′
1(wn−1)]en}ds
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≤
∫ 1

0

{[µ′′1(γ3)(γ1 − wn−1)− ψ′
1(wn−1) + ψ′

1(γ2)]en−1 + h′1(wn−1)en}ds

≤
∫ 1

0

{[µ′′1(γ3)(x− wn−1) + ψ′′
1(γ4)(x− wn−1)]en−1 + h′1(wn−1)en}ds

=

∫ 1

0

{[µ′′1(γ3) + ψ′′
1(γ4)]e

2
n−1 + h′1(wn−1)en}ds,

and

en(1) + k2e
′
n(1) =

∫ 1

0

[h2(x(s))−H2(wn(s), wn−1(s))]ds

=

∫ 1

0

{[µ′′2(γ∗3) + ψ′′
2(γ

∗
4)]e

2
n−1 + h′2(wn−1)en}ds,

where wn−1 ≤ γ3 ≤ γ1, γ
∗
3 ≤ x, wn−1 ≤ γ4 ≤ γ2, γ

∗
4 ≤ wn. In view of (A3), there

exist λi < 1 and Ci ≥ 0 such that h′i(wn−1(s)) ≤ λi and µ′′i (γ3(γ
∗
3)) + ψ′′

i (γ4(γ
∗
4)) ≤

Ci (i = 1, 2). Let λ(< 1) = max{λ1, λ2} and C(≥ 0) = max{C1, C2}, then

en(0)− k1e
′
n(0) ≤ λ

∫ 1

0

en(s)ds+ C

∫ 1

0

e2n−1(s)ds,

en(1) + k2e
′
n(1) ≤ λ

∫ 1

0

en(s)ds+ C

∫ 1

0

e2n−1(s)ds.

In view (A2) and (3.3), we obtain

e′′n(t) + ke′n(t) = x′′ + kx′ − (wn + kwn)

= −f(t, x) + g(t, wn, wn−1)

= −f(t, x) + f(t, wn−1) + Fx(t, wn−1)(wn − wn−1) + φ(t, wn−1)− φ(t, wn)

= −fx(t, c1)(x− wn−1)− Fx(t, wn−1)(x− wn) + Fx(t, wn−1)(x− wn−1)

− φx(t, c2)(wn − wn−1)

= [−fx(t, c1) + Fx(t, wn−1)− φx(t, c2)]en−1 + [−Fx(t, wn−1) + φx(t, c2)]en

= [−Fx(t, c1) + Fx(t, wn−1) + φx(t, c1)− φx(t, c2)]en−1

+ [−Fx(t, wn−1) + φx(t, c2)]en

≥ [−Fx(t, x) + Fx(t, wn−1) + φx(t, wn−1)− φx(t, wn)]en−1

+ [−Fx(t, wn−1) + φx(t, wn−1)]en

= [−Fxx(t, c3)− φxx(t, c4)]e
2
n−1 − fx(t, wn−1)en

≥ −[A+B]e2n−1

= −M‖en−1‖2,

where wn−1 ≤ c3 ≤ c1 ≤ x, wn−1 ≤ c4 ≤ c2 ≤ wn, A is a bound on ‖Fxx‖, B is a

6



bound on ‖φxx‖ for t ∈ [0, 1] and M = A+B. Thus,

en(t) =
−(1− kk2)e

−k + e−kt

(1 + kk1)− (1− kk2)e−k

∫ 1

0

[h1(x(s))−H1(wn(s), wn−1(s))]ds

+
(1 + kk1)− e−kt

(1 + kk1)− (1− kk2)e−k

∫ 1

0

[h2(x(s))−H2(wn(s), wn−1(s))]ds

+

∫ 1

0

G(t, s)[f(s, x(s))− g(t, wn, wn−1)]ds

≤ −(1− kk2)e
−k + e−kt

(1 + kk1)− (1− kk2)e−k
[λ

∫ 1

0

en(s)ds+ C

∫ 1

0

e2n−1(s)ds]

+
(1 + kk1)− e−kt

(1 + kk1)− (1− kk2)e−k
[λ

∫ 1

0

en(s)ds+ C

∫ 1

0

e2n−1(s)ds]

−
∫ 1

0

G(t, s)[e′′n(s) + ke′n(s)]ds

≤ λ

∫ 1

0

en(s)ds+ C

∫ 1

0

e2n−1(s)ds+M‖en−1‖2

∫ 1

0

G(t, s)ds

≤ λ‖en‖+ C‖en−1‖2 +M1‖en−1‖2 = λ‖en‖+ C1‖en−1‖2,

where M1 = Ml, l is a bound on
∫ 1

0
G(t, s) and C1 = M1 +C. Taking the maximum

over [0, 1], we get

‖en‖ ≤
C1

1− λ
‖en−1‖2.

This completes the proof.

4 Concluding remarks

If we take q1(.) = a, q2(.) = b (a and b are constants) in (2.1), our results correspond
to the forced Duffing equation with separated boundary conditions. By taking
µ1 = 0 = µ2 in (2.1), our problem reduces to the Dirichlet boundary value problem
involving the forced Duffing equation with integral boundary conditions. By taking
ψ(x) ≡ 0 in the assumption (A2), the results of [21] appear as a special case of
our main result. Thus, the present study is quite useful and improve some earlier
results.

References

[1] A. Bouziani, N.E. Benouar, Mixed problem with integral conditions for a third
order parabolic equation. Kobe J. Math. 15(1998), 47-58.

[2] J.R. Cannon, The one-dimensional heat equation In: Encyclopedia of Math. and
its Appl. 23, Addison-Wesley, Mento Park, CA (1984).

7



[3] J.R. Cannon, S. Perez Esteva, J. Van Der Hoek, A Galerkin procedure for the
diffusion equation subject to the specification of mass. SIAM. J. Numer. Anal.
24(1987), 499-515.

[4] N.I. Ionkin, Solution of a boundary value problem in heat condition with a
nonclassical boundary condition. Diff. Uravn. 13(1977), 294-304.

[5] A.V. Kartynnik, Three-point boundary value problem with an integral space-
variable condition for a second-order parabolic equation. Differ. Equ. 26(1990),
1160-1166.

[6] N.I. Yurchuk, Mixed problem with an integral condition for certain parabolic
equations. Differ. Equ. 22(1986), 1457-1463.

[7] M. Denche, A.L. Marhoune, Mixed Problem with integral boundary condition
for a high order mixed type partial differential equation. J. Appl. Math. Stoch.
Anal. 16 (2003), 69-79.

[8] Y.S. Choi, K.Y. Chan, A parabolic equation with nonlocal boundary conditions
arising from electrochemistry. Nonlinear Anal. 18(1992), 317-331.

[9] R.E. Ewing, T. Lin, A class of parameter estimation techniques for fluid flow in
porous media. Adv. Water Resources 14(1991), 89-97.

[10] P. Shi, Weak solution to evolution problem with a nonlocal constraint. SIAM
J. Anal. 24 (1993), 46-58.

[11] L. Formaggia, F. Nobile, A. Quarteroni, A. Veneziani, Multiscale modelling of
the circulatory system: a preliminary analysis. Computing and Visualization in
Science 2(1999), 75-83.

[12] R. Bellman and R. Kalaba, Quasilinearization and Nonlinear Boundary Value
Problems. Amer. Elsevier, New York, 1965.

[13] V. Lakshmikantham, A.S. Vatsala, Generalized Quasilinearization for Nonlinear
Problems. Mathematics and its Applications, 440. Kluwer Academic Publishers,
Dordrecht, 1998.

[14] A. Cabada, J.J. Nieto, Quasilinearization and rate of convergence for higher
order nonlinear periodic boundary value problems. J. Optim. Theory Appl.
108(2001), 97-107.

[15] B. Ahmad, J.J. Nieto and N. Shahzad, The Bellman-Kalaba-Lakshmikantham
quasilinearization method for Neumann problems. J. Math. Anal. Appl.,
257(2001), 356-363.

[16] B. Ahmad, J.J. Nieto and N. Shahzad, Generalized quasilinearization method
for mixed boundary value problems. Appl. Math. Comput. 133(2002), 423-429.

8



[17] R.A. Khan, The generalized method of quasilinearization and nonlinear bound-
ary value problems with integral boundary conditions, EJQTDE 10(2003), 1-15.

[18] B. Ahmad, A quasilinearization method for a class of integro-differential equa-
tions with mixed nonlinearities. Nonlinear Anal. Real World Appl. 7(2006), 997-
1004.

[19] V.B. Mandelzweig, F. Tabakin, Quasilinearization approach to nonlinear prob-
lems in physics with application to nonlinear ODEs. Computer Physics Comm.
141(2001), 268-281.

[20] S. Nikolov, S. Stoytchev, A. Torres, J.J. Nieto, Biomathematical modeling
and analysis of blood flow in an intracranial aneurysms. Neurological Research
25(2003), 497-504.

[21] B. Ahmad, A. Alsaedi, and B. Alghamdi, Analytic approximation of solutions of
the forced Duffing equation with integral boundary conditions, Nonlinear Anal.
Real World Appl. (2007), doi: 10.1016/j.nonrwa.2007.05.005.

9


